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Localization of classical waves in two-dimensional random media: A comparison between
the analytic theory and exact numerical simulation
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The localization length of classical waves in two-dimensional random media is calculated exactly, and is
compared with the theoretical prediction from the current analytic theory. Significant discrepancies are ob-
served. It is also shown that as the frequency varies, critical changes in the localization behavior can occur.
However, by a rescaling of parameters the two results tend to match each other for weak scattering. Possible
reasons for the discrepancies are discussed.
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I. INTRODUCTION (e.g., Refs[14,24], and summarized in Ref25]).
A question we raise in this paper is about the validity of
Propagation of waves through random medium has beeihe existing theoretical formula for localization length, and
and continues to be a subject of vivid resedrth6]. When  subsequently the appropriateness or accuracy of the previous
propagating through media containing many scatterergheory of wave localization. A main reason behind raising
waves will be repeatedly scattered by each scatterer, formingﬂs_qu?Stion is that it would be helpful to experimentalists in
a multiple scattering proce$d]. Multiple scattering is re- designing experiments, provided that the theoretical formula
sponsible for phenomena such as random 158, elec- for localization length is accurate enough in both qualitative
tronic transport in impure solid€.0], and photonic or acous- 2nd quantitative sense, and otherwise, it may mislead the

tic band gapg11-13. Under proper conditions, multiple experimentalists if the theory is not accurate enough.

scattering leads to the unusual phenomenon of wave Iocalr:a i;r:; ;Tt])?)l\r/]eaflcrﬂ gagi;;apgr ;Ss t%ggs"\ge;s.tgli quaest!gntz
ization, a concept introduced by Andersd]. ical- waves. possible way 1

Such a localization phenomenon has been characterizeq, ncentrate on an exactly computable system and find the
P exact characteristic decay length of the transmitted intensity

by two levels. One is the yveak localization, a?so‘?'a‘ed Wltr‘Nith the sample size, and compare with the theoretical value
the enhanced backscattermg due to constructive !nterferen%q this particular system, obtained from the existing theory.
from the reversed propagating paths. The second is termed #$his paper, we first outline the previous theory and show a
the strong localizatioffor brevity just termed as localization  nymerically exact procedure for the calculation of the local-
hereaftey, in which significant inhibition of transmission sur- jzation length for classical waves in two-dimensional media.
faces, indicating that the energy mostly remains in a regiorhen we compare the two results, to gain information about
of space in the neighborhood of the emission. The generallyhe accuracy and appropriateness of the previous theory. In
accepted wisdom on the connection between the weak locakddition, we will also investigate the localization behavior as
ization and the strong localization is that enhanced backthe frequency varies. These will be followed by a detailed
scattering of a diffusive wave packet leads to an effectivadiscussion on the implications of the results.
reduction in the diffusion constant of the wave packet. When
the influence of the increased backscattering is so over-
whelming that the diffusion constant vanishes, the strong lo- Il. FORMALISM
calization sets in.

It is worthy to mention that tremendous efforts have been A. The theory
devoted to investigate the localization phenomenon for clas- Here we briefly review the existing theory for wave local-
sical waves in random media over the past several yeaingation. As wave propagates in random media, it experiences
[14-23. However, observation of classical wave localiza-multiple random scattering, and as a result, the wave loses its
tion is a difficult task, partially because suitable systems arg@ropagating phase, leading to the gradual decreases of the
hard to find and partially because observation is often comeoherence of the wave in the absence of absorption, i.e.,
plicated by such effects as absorption and attenuation. elastic scattering. Meanwhile, diffusive wave is built up as

One important quantity associated with the wave localizamore and more scattering takes place. The traditional picture
tion is the localization length, which is defined as the char-of localization is in fact a version of localization of diffusive
acteristic decay length of the transmitted intensity throughwvaves. In other words, the conventional wisdom towards the
the system from the source. Taking into account the enlocalization mechanism is the absence of diffusion. The pro-
hanced backscattering, the correctexzhormalizegldiffusion ~ cedure to obtain the localization state can be briefly summa-
constant may be obtained which then may be set to zero tozed as follows.
obtain the localization length. This theoretical version of the The quantityD(®, which is a measure of diffusion of
localization length may be found in the literature for variousclassical waves, is called the classical Boltzmann diffusion
dimensions for both the electronic waves and classical wavesonstant and it may be derived under the coherent potential
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approximation 2], and is given a$25] Under the effective medium theory, the mean free patiay
be obtained from the characteristic decay length of the co-
D® ~ vl 1) herent intgnsity and may be expressedilailz Im(keg) and
dgim’ the effective wave numbée.s may be written as
whereuv; is the transport velocity,is the mean free path, and _ 2_77
dgirn is the dimensionality. Ker=k+\ 70, ®

Waves scattered along any two reversed paths in the back-
ward direction interfere constructively, leading to the en-wherek is the wave number of the incident wave propagat-
hanced backscattering effect, which will then add correctionsng through the random scattering media with the scatterer
to the diffusion coefficient. In the two-dimension case, suchnumerical density; f(0) represents the scattering function
an enhanced backscattering effect is represented by a set@f a single scatterer in the forward direction. The forward
maximally crossed ladder diagrams. An evaluation of thesecattering function can be calculated by the standard series
diagrams leads to an integration for which two cutoff limits expansion method for a cylinder with radiaswhen a wave
have to be introduced to avoid the divergence. In this waywith wave vectork is incident normally on it. The forward
the correction to the diffusion constant for two-dimensionalscattering function is given as
system may be found to H&5]

2 & .
— . —i(nm/2+ ml4)
SD~—In(Ly /1), @) f(0)= 732 Cre ©)

whereL,, andl, are the two cutoff limits. It is then inter- With
preted in the previous theory that the cutoff linhjt is a
measure of the minimum scaling for the waves and is

1
thought to be related téfor example the mean free path, ~ €n| Jn(ka)Jn(k'a) = ﬁ‘]”(ka)‘]”(k 3)
wheread.\, is a measure of the effective size of the sample. Cn= 1 -
It is rather important to note that the correction in E2). is H® (ka)d,(k'a)— —HP(ka)J/ (k'a)

not only negative but diverges as, approach infinity. This gh

is obviously unphysical, since the conductance or the Cor\'/vhereeozl ande,_,=2, giis the ratio of the density of the

rected diffusion constant cannot be negative. To avoid th%catterer to that of the mediajs the ratio of the wave speed

Pmbll.enlf It was conject_ureld ttr;]mﬂ IS 'IF‘ fr;t\_ct rclelatet?] to the hin the sactterer to that in the medik, represents the Bessel
ocalization range, or simply the localization 1engtn, In SUCh ,, iq o ordern, Hﬁ,l) represents theth order Hankel

way that wher_, is equal to the localization length denoted . . , L I
by £ say(ie., Ly=£), the corrected diffusion coefficient function of first kind, and prime indicates the derivative.

becomes zero, i.e., the absence of diffusion: ) .
B. Exact numerical calculation
Dr(£&)=D® + 8D (¢)=0. 3 Thus, on one hand the localization length of classical
wave in a system consisting of any kind of cylindrical scat-

The localization lengttt is solved from this equation. It is terers placed randomly in any media may be evaluated by the
obvious that this equation always renders a solution and thu4se of equations from the previous theory. On the other hand,
a localization |ength can a|WayS be found in two dimensionsthe localization Iength of classical waves in two-dimensional
Such an absence-of-diffusion mechanism is the core of thEandom media may also be calculated exactly by the use of
previous theory of localization in two dimensions, and sup-the multiple scattering technique. A
ports the assertion from a scaling analysis that all waves are Consider N straight cylinders located at; with i
localized in two dimensiong26]. =1,2,... N to form acompletelyrandom array. An acoustic

As will be shown later, there are significant discrepanciedine source transmitting monochromatic waves is placed at
between the result from the absence-of-diffusion mechanisrﬁs_ Here we take the standard approach with regard to the
and the result from the exact numerical computation. Thesggurce. That is, the transmission from the source is calcu-
discrepancies would indicate either that the theory based oted from the multiple scattering theory, and assume that the
the diffusion mechanism is not accurate enough or simplysource is not affected by the surroundings. If some other
that the theory has not yet fully captured the essence of thgources such as a line of atoms are used, the reaction be-

localization. We will come back to this later. Since the theorytween the source and the backscattered waves should take
heavily depends on the diffusion picture, we may call it thejnto account.

diffusion based theory The scattered wave from each cylinder is a response to the
Equation(3) leads to the following solution for the local- total incident wave composed of the direct wave from the
ization length in two dimensions: source and the multiply scattered waves from other cylin-
ders. The final wave reaching a receiver located, d$ the
Eoon=] €X n kel |. (4 ~Sum of direct wave from the source and the scattered waves
theory 2 et from all the cylinders. Such scattering problem can be solved
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exactly, following Twersky. While the details are in Ref. 0 T T T I .
[27], the essential procedures are summarized below. The ka=0.010
formulation presented below has been successfully applied t« L ka=0.013 ||

. . . . ka=0.016
explain the recent experimental observations of acoustic

(o Neo]

crystals[28,29.
The scattered wave from théh cylinder can be written as

po(r.rj)= 2 imAHD(Kr=r)e", ()
n=—w

wherek is the wave number in the medium " is thenth

order Hankel function of first kind, and);,;j is the azi-

muthal angle of the vector—r; relative to the positivex
axis. The total incident wave around théh cylinder (
=1,2,... N;i#]) is summation of the direct incident wave

>

Q)]

<InITI

N 1 | I l 1 | I
600 5 10 15

L

20

from the source and the scattered waves from all other scat-

terers, can be expressed as

0

Pin(1)= 2 Brdn(KIr—riem . ®)

The coe1‘ficientsb\in and Bin can be solved by expressing

the scattered Wava(F, Fj), for eachj#i, in terms of the
modes with respect to thi¢h scatterer by the addition theo-
rem for Bessel functiof30]. Then the usual boundary con-

FIG. 1. (In]T]% is plotted as a function of sample sitefor
ka=0.010(circles, ka=0.013(starg andka=0.016 (diamonds,
respectively. Here the filling factgs is 0.001.

L

—_—, 14
(In[T(L)I%) 1

Eexact —

wherel is the sample size, ang) denotes the ensemble
average over the random distribution of the scatterers. Thus

ditions are matched at each individual scattering cylinderobtained localization length can be compared to that in Eq.

This leads to
N
Bl=S,+ > Ck, ©)
j=1j#i
with
Sy=irH (K[ ri)e ", (10
Ch'= 3 imAHD (KIr—rjhel -, (1)
and
Bl =imr Al (12

(4) obtained analytically from the previous theory.

I1l. RESULTS COMPARISON AND DISCUSSION
A. Results comparison

The system we consider here consistd\ofdentical air
cylinders placed randomly in water medium. The reason be-
hind considering the system as the air cylinders in water is
that due to the large contrast of densities for air and water,
and also a large contrast of sound speeds in air and water, the
air cylinders act as strong scatters to the waves propagating
in water media. The radius of each air cylinderaisThe
fraction of area occupied by the cylinders per areg.iShe
average distance between nearest neighbors is, therefore,
=(ar/B)*?a, which is also the lattice constant for the corre-
sponding regular lattice array. All the cylinders are placed

wherer!, are the transfer matrices relating the acoustic propcompletely randomly within a circle of radius A transmit-
erties of the scatterers and the surrounding medium, anghg line source is located at the center and the receiver is

have been given by E@21) in Ref.[28].

The coefficientsA;, and B, can then be determined from
Eg. (9). Once the coefficientd,, are determined, the trans-
mitted wave at any special point is given by

N o0
P()=po(N)+ 2, X iwAHP(KIr—r e,
i=ln=-—o»
13

located outside the scattering cloud. In the computation, the
acoustic intensity is normalized in such a way that its value
equals unity, when there are no scatterers present. Thus the
uninteresting geometrical spreading effect is naturally elimi-
nated. All the lengths are scaled by the paramét@nd the
frequency is presented in termslod to make the computa-
tion nondimensional.

Figure 1 shows the variation dfn|T|?) as a function of
the system sizd. for three different values of frequency

where p, is the field when no scatterers are present. Thdka=0.01, 0.013, and 0.016with the filling fraction B

normalized transmission is defined &s-p/p, and, there-
fore, the acoustic intensity is represented HS.

=0.001. The(-) implies the configuration average of the
total transmitted intensity. Number of configurations consid-

The averaged localization length is subsequently deterered here is 200. It is apparent from the Fig. 1 that the aver-

mined by[31,32

aged total transmitted intensity decays exponentially with the
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FIG. 2. Localization lengtlf is shown as a function of frequen- FIG. 3. Same as the Fig. 2 except that 0.01 here.

cieska for 8=0.001. The dashed curve with circles represent the

exact values obtained numerically, while the solid curve is obtaineqhe exact numerical computation. As a result. we observe that
from theoretical formula. P ’ '

the two curves cross each other at some frequency, say

dimensionless system size for all the ka values shown in  (ka),. For ka<(ka).,, the localization length obtained
the figure, which in turn indicates the localization of wave atfrom exact numerical calculation is larger than that obtained
those frequencies. The localization length is nothing but thérom the existing theoretical formula while féra> (ka),,,
characteristic decay length and thus it may be obtained frorthe theoretical value dominates over the exact value of local-
the inverse of the slope of the straight lings Fig. 1) for  ization length.[Note that both the results are theoretical
those frequencies. Similarly one may obtain the localizatiorthough, the resultévalues obtained from the previous the-
length of classical waves at other frequencies from the exad@retical formula are termed as theoretical resiedues and
numerical computation. those obtained from exact numerical calculations are termed

Figure 2 presents the dimensionless localization legth as exact resultévalues and we may use this convention for
as a function of frequencidsa for 3=0.001. The dashed our conveniencg.In the low- and high-frequency regimes,
curve with circles represent the localization length obtainedhe discrepancies between the theoretical and the exact val-
from the exact numerical computation using the multipleues are significant.
scattering technique, while the solid curve represents the lo- We have also done similar calculations {8 0.01 and
calization length calculated from the theoretical formula ascompared the localization length obtained from the theoreti-
prescribed earlier in Eq4). From the dashed curve, we ob- cal formula with that obtained from the exact numerical
serve that the localization length increases very rapidly as theomputation and is shown in Fig. 3. While the theoretical
frequency of the wave is decreased at the low frequenc§ormula seems to capture the shape of the exact reigtigs.
regime, the localization length also increases rapidly with the2 and 3, but there are significant discrepancies with regard
increase of frequency at the high-frequency regime and ther® whether the waves are most localized, and where localiza-
is @ minimum of localization length at an intermediate fre-tion length starts to increase rapidly.
quency. For lower values of frequencies, the waves propagat- We have shown in Fig. 4, the variation of localization
ing through the random media feel the media as homogdength ¢ as a function of the filling factog for ka=0.009,
neous over a large distance depending on the wavelength, fethich is less thanka), in Fig. 2. The dashed curve with
higher values of frequencies the waves are like very localcircle represents the exact localization length obtained from
ized objects that can easily propagate between the scattergrgmerical calculation, and the solid curve is obtained from
and at an optimal frequency, the waves feel the strongegheoretical formula. The solid curve shows the monotonous
scattering in the random media. Thus, the larger values ofecrease of the localization length as the filing factor in-
localization lengths at lower and higher frequencies and thereases but the exact res(diashed curve with circjeshows
minimum value of localization length at an intermediate fre-completely different behavior: the localization length ini-
guency are understood physically. tially decreases and then increases monotonically, leaving a

However, we observe that the critical change in the local-minimum at some value 8. Thus, the wave with frequency
ization length takes place at lower and higher frequencieska=0.009 becomes localized most strongly only for a spe-
On the other hand, the solid curve also shows similar behaweific value of the average density of scatterers. However, for
ior. But, one important difference is that the minimum of theka=0.009, the exact localization length is larger than the
dashed curve occurs at a higher frequency when compardteoretical values for all filling factors. Thus, here we ob-
with that of the solid curve. In other wards, the strongestserve that at the frequen&ga=0.009, the theoretical results
localization predicted from the previous theoretical formulado not capture the overall trend of the exact results. The
occurs at a frequency, which is lower than that obtained froneventual increase of the localization length with increaging
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FIG. 4. Localization lengtt¥ is shown as a function of filling FIG. 5. Same as the Fig. 4 except tlkat=0.015 here.

factor 8 for ka=0.009. The dashed curve with circles represent the

exact values obtained numerically, while the solid curve is obtainedhe exact values are larger than the theoretical values for

from theoretical formula. localization length. Thus gta=0.015, the exact and theo-

retical curves are similar in shape for the rangesafonsid-

is understandable. At two limits, i.e., for either pure waterered, the exact and theoretical values for localization length

(B=0) or pure air 3=1), there can be no localization and matches a3= 3.,, otherwise there are significant quantita-

the localization length must approach infinity. Therefore, thetive discrepancies. We note that when increastnturther,

curve of the localization length versy® has to be in the like in Fig. 4, the valley shape for the exact result will ap-

shape of valley as shown in Fig. 4. The theoretical result igear; the explanation can be referred to from the above dis-

based upon the approximation that air cylinders are pertureussion. All the observed discrepancies between the theoret-

bative scatterers in the medium of water, thus the theory ifal and exact results are probably due to the approximations

expected to fail for strong scattering and thus cannot worknvolved in the previous theory.

for large 8. This would explain, why the theory cannot cap-  In order to study the fluctuation behavior of localization,

ture the overall trend of the localization length as a functionwe define an exponent, by analogy with one-dimensional

of B. caseq 33],
The variation of localization length as a function of the

filling factor B for a moderate frequendya=0.015, which

is greater than Ka)., in Fig. 2, is shown in Fig. 5. The

dashed curve with circle represents the exact result and the

solid curve represents the theoretical result for localizatiorwhich is reciprocal to the localization length. Figuréa)6

length. The localization length decreases with filling factorshows the variance ofy, i.e., var(y)=(y?)—(vy)?, as a

for both the curves. However, there is a cross over betweefunction ofka for 8=0.001.

two curves at some value @, say B, below which the We interestingly observe that for a range of frequencies,

theoretical value is higher than the exact value and alfye the fluctuation is rather small indicating that the wave is

1
y=- (TP, 15

(a) (Y]
0.03 . . 0.2
0.025 045 .’:._:..,:.
] 1".'. “eur .
0.02 _ e
g S < TR L
=4 oy o ™
§ 0.015 , “Eds
0.05}
0.01
0.005 0
0.005 0.01 0.015 0.02 0.025 0 1 2 3 4
ka <>

FIG. 6. (a) This shows the variance of the localization exponent ¥ads a function of frequencka with 8=0.001.(b) The variance
var(y) is shown as a function of the meary) for 3=0.001.
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FIG. 7. Scaled replots of Figs. 2 and 3. In the plaisjenotes the scaling factor. The theoretical results are plottedkasfor two «
values.

strongly localized in this range of frequencies. However, at (2) The scaled match degrades @sncreases.

low and high frequenciegsbelow and above the range of  (3) Looking again at Figs. 4 and 5, we can infer that for
frequencies where the fluctuation is very smétie fluctua-  frequencies near the strongest localization, i.e., strongest
tion is high. This is an indication of some critical change inscattering, the scaled match is expected to degrade faster
the localization behavior and it tends to suggest that wavefhan other frequencies @increases; for examp|e’ compar-
become very rapidly and critically less localized at low anding Fig. 4 to Fig. 5, we can see that the exact and theoretical

high frequencies. It may also be an implication of theegyits forka=0.015 have the similar shapes for a wider
localization-delocalization transition, as discussed in Refsrange of 8.

[34'35;" These cannot be explained in the context of the cur- All these would imply that the scaled match is better for
rent dlffutsmn baset(:l theory. W? ?:Ifso g(lg)t t:e vanar:jce Oftth‘?/veak scattering, and the level of match decreases as the scat-
exponenty Versus the meafy) in Fig. - Mere we do no .tering increases which can be made by adding more scatter-
observe the linear dependence between the mean Iocahzatlgps per unit area or moving to strong scattering regions. It

length and the variance, similar to one-dimensional CaS81 also be inferred that E6) may capture the localization
[33.38. essence, but there is a need for improvement of the effective
medium theory that leads to E(p).

B. Discussion The second implication would be simply that the existing
theory, which is based upon the absence-of-diffusion mecha-
. ; =79 nism, has not yet fully encapsulated the essence of the phe-
theory should possibly have a couple of important II”npl'ca'nomenon of wave localization. Beside the results shown

tions. r‘}l’he. first 'tls' merely th"’?} tTJe thgory IS not afClngeabove, there are other evidences indicating that this line of
enougn, since 1t Is necessarly based upon a pertur a'ot%asoning should not be discarded too lightly. For example, it

tsr::_heme given the l(_:é)mpllcatlolgsbml\_/olve?hlrl iﬂe prr(])lglem. Ifhas been shown that in the localized state, a genuine phase-
IS scenario IS valid, we could believe that though INacCu+,pqance pehavior prevails as a unique feature of localized

f the localizat h It Id then b N bl(ﬁaves[34]. This coherent behavior can be understood as
ot thé localization phenomenon. it wou €n be expectabig,) o s, For guantum mechanic or acoustic waves, the cur-
that the discrepancies will be reduced when more and more

relevant multiple scattering processes are included in the thé€nt can be written as~Re(y( i)V ), whereys stands for
oretical derivation. A next task would thus be to look for 1€ wWave function for quantum mechanical systems and for
these scattering processes. the pressure in acoustic systems. Writing the fieldJas

In fact, by inspection, it is evident that the exact and the-=|#|e'’, the current becomed~|#|°V 6. It is clear that
oretical results in Figs. 2 and 3 seem to be able to match eadhhen ¢ is constant at least by domains whilg|+0, the
other by a scaling. In Fig. 7, we replot the results from Figs flow stops, i.e.J=0, and the wave or the energy is localized
2 and 3 by rescaling the variabie for the exact results. The in space, i.e.}y|2# 0. Obviously the constant phagendi-
scaling factora is 1.5 and 1.66 fol3=0.001 and 0.01, re- cates the appearance of a long range ordering in the system.
spectively. Here we see that after the scaling, the two resultall these have been demonstrated successfully not only for
match quite well, particularly for low3. Such scaling is two-dimensional medif34,35, but for one and three dimen-
equivalent to replacing in Eq. (5 by k/«, suggesting a sions as wel[21,36,37. It can be easily shown that the same
need for renormalizing the parameters used in the theorygonsideration also holds for electromagnetic waj&8. In
possibly those that come from the effective medium approxithe current diffusion based theory, the phase information is
mation, as suggested by one of the referees. A few notes camt attained. Therefore, at least the theory cannot account for

All the deviations from the predictions of the existing

be made on the scaling factor. the phase coherence related localization phenomenon. Addi-
(1) As shown in Fig. 7, the scaling factor depends@n tionally, the theory could also be expected to fail when
and appears to increase with waves come to a complete stop before the diffusion becomes
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dominant. In summary, if the above arguments are valid, thejuencies. These features are not readily seen in the previous
next question would be whether these can be amended likieoretical picture of wave localization. However, by a res-

improving the effective medium theory. caling of parameters the two results tend to match each other
for weak scattering. Therefore, it is suggested that caution
IV. SUMMARY should be taken when applying the previous analytic theory

to infer the localization length of classical waves. Possible

~The localization length of classical waves in two- jmpjications of the present research are discussed.
dimensional random media is obtained from exact numerical

computation as well as from the previous theoretical formula
and then the results are compared. Significant discrepancies
between the two results is observed. Furthermore, results in-
dicate some critical change in the localization behavior at This work received support from the National Science
low and high frequencies, and it seems to suggest that wavé3ouncil of the Republic of ChingGrant No. NSC 90-2811-
become very rapidly and critically less localized at these freM008-004.
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