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Localization of classical waves in two-dimensional random media: A comparison between
the analytic theory and exact numerical simulation
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Wave Phenomena Laboratory, Department of Physics, National Central University, Chungli 32054, Taiwan
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The localization length of classical waves in two-dimensional random media is calculated exactly, and is
compared with the theoretical prediction from the current analytic theory. Significant discrepancies are ob-
served. It is also shown that as the frequency varies, critical changes in the localization behavior can occur.
However, by a rescaling of parameters the two results tend to match each other for weak scattering. Possible
reasons for the discrepancies are discussed.

DOI: 10.1103/PhysRevE.67.036606 PACS number~s!: 43.20.1g, 42.25.Fx
ee

er
i

-

ca

iz
it

en
d

n
r-
io
a
c
c
iv
e

ve
lo

e
la
ea
a
a
m

za
ar
g
en

o
h
us
v

of
nd
ious
ng
in
ula
ive
the

ns
to

the
sity
lue
ry.

a
al-
ia.
out
y. In
as
ed

l-
ces
s its
f the
i.e.,
as
ture
e
the
ro-

ma-

f
ion
ntial
I. INTRODUCTION

Propagation of waves through random medium has b
and continues to be a subject of vivid research@1–6#. When
propagating through media containing many scatter
waves will be repeatedly scattered by each scatterer, form
a multiple scattering process@7#. Multiple scattering is re-
sponsible for phenomena such as random laser@8,9#, elec-
tronic transport in impure solids@10#, and photonic or acous
tic band gaps@11–13#. Under proper conditions, multiple
scattering leads to the unusual phenomenon of wave lo
ization, a concept introduced by Anderson@10#.

Such a localization phenomenon has been character
by two levels. One is the weak localization, associated w
the enhanced backscattering due to constructive interfer
from the reversed propagating paths. The second is terme
the strong localization~for brevity just termed as localizatio
hereafter!, in which significant inhibition of transmission su
faces, indicating that the energy mostly remains in a reg
of space in the neighborhood of the emission. The gener
accepted wisdom on the connection between the weak lo
ization and the strong localization is that enhanced ba
scattering of a diffusive wave packet leads to an effect
reduction in the diffusion constant of the wave packet. Wh
the influence of the increased backscattering is so o
whelming that the diffusion constant vanishes, the strong
calization sets in.

It is worthy to mention that tremendous efforts have be
devoted to investigate the localization phenomenon for c
sical waves in random media over the past several y
@14–23#. However, observation of classical wave localiz
tion is a difficult task, partially because suitable systems
hard to find and partially because observation is often co
plicated by such effects as absorption and attenuation.

One important quantity associated with the wave locali
tion is the localization length, which is defined as the ch
acteristic decay length of the transmitted intensity throu
the system from the source. Taking into account the
hanced backscattering, the corrected~renormalized! diffusion
constant may be obtained which then may be set to zer
obtain the localization length. This theoretical version of t
localization length may be found in the literature for vario
dimensions for both the electronic waves and classical wa
1063-651X/2003/67~3!/036606~7!/$20.00 67 0366
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~e.g., Refs.@14,24#, and summarized in Ref.@25#!.
A question we raise in this paper is about the validity

the existing theoretical formula for localization length, a
subsequently the appropriateness or accuracy of the prev
theory of wave localization. A main reason behind raisi
this question is that it would be helpful to experimentalists
designing experiments, provided that the theoretical form
for localization length is accurate enough in both qualitat
and quantitative sense, and otherwise, it may mislead
experimentalists if the theory is not accurate enough.

The main aim of this paper is to answer the questio
raised above for classical waves. One possible way is
concentrate on an exactly computable system and find
exact characteristic decay length of the transmitted inten
with the sample size, and compare with the theoretical va
of this particular system, obtained from the existing theo
In this paper, we first outline the previous theory and show
numerically exact procedure for the calculation of the loc
ization length for classical waves in two-dimensional med
Then we compare the two results, to gain information ab
the accuracy and appropriateness of the previous theor
addition, we will also investigate the localization behavior
the frequency varies. These will be followed by a detail
discussion on the implications of the results.

II. FORMALISM

A. The theory

Here we briefly review the existing theory for wave loca
ization. As wave propagates in random media, it experien
multiple random scattering, and as a result, the wave lose
propagating phase, leading to the gradual decreases o
coherence of the wave in the absence of absorption,
elastic scattering. Meanwhile, diffusive wave is built up
more and more scattering takes place. The traditional pic
of localization is in fact a version of localization of diffusiv
waves. In other words, the conventional wisdom towards
localization mechanism is the absence of diffusion. The p
cedure to obtain the localization state can be briefly sum
rized as follows.

The quantityD (B), which is a measure of diffusion o
classical waves, is called the classical Boltzmann diffus
constant and it may be derived under the coherent pote
©2003 The American Physical Society06-1
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approximation@2#, and is given as@25#

D (B);
v tl

ddim
, ~1!

wherev t is the transport velocity,l is the mean free path, an
ddim is the dimensionality.

Waves scattered along any two reversed paths in the b
ward direction interfere constructively, leading to the e
hanced backscattering effect, which will then add correcti
to the diffusion coefficient. In the two-dimension case, su
an enhanced backscattering effect is represented by a s
maximally crossed ladder diagrams. An evaluation of th
diagrams leads to an integration for which two cutoff lim
have to be introduced to avoid the divergence. In this w
the correction to the diffusion constant for two-dimension
system may be found to be@25#

dD;2 ln~LM / l m!, ~2!

whereLM and l m are the two cutoff limits. It is then inter
preted in the previous theory that the cutoff limitl m is a
measure of the minimum scaling for the waves and
thought to be related to~for example! the mean free path
whereasLM is a measure of the effective size of the samp
It is rather important to note that the correction in Eq.~2! is
not only negative but diverges asLM approach infinity. This
is obviously unphysical, since the conductance or the c
rected diffusion constant cannot be negative. To avoid
problem, it was conjectured thatLM is in fact related to the
localization range, or simply the localization length, in su
way that whenLM is equal to the localization length denote
by j, say ~i.e., LM5j), the corrected diffusion coefficien
becomes zero, i.e., the absence of diffusion:

DR~j!5D (B)1dD~j!50. ~3!

The localization lengthj is solved from this equation. It is
obvious that this equation always renders a solution and
a localization length can always be found in two dimensio
Such an absence-of-diffusion mechanism is the core of
previous theory of localization in two dimensions, and su
ports the assertion from a scaling analysis that all waves
localized in two dimensions@26#.

As will be shown later, there are significant discrepanc
between the result from the absence-of-diffusion mechan
and the result from the exact numerical computation. Th
discrepancies would indicate either that the theory based
the diffusion mechanism is not accurate enough or sim
that the theory has not yet fully captured the essence of
localization. We will come back to this later. Since the theo
heavily depends on the diffusion picture, we may call it t
diffusion based theory.

Equation~3! leads to the following solution for the loca
ization length in two dimensions:

j theory5 l expFp2Re~keff!l G . ~4!
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Under the effective medium theory, the mean free pathl may
be obtained from the characteristic decay length of the
herent intensity and may be expressed asl 51/2 Im(keff) and
the effective wave numberkeff may be written as

keff5k1A2p

ik
r f ~0!, ~5!

wherek is the wave number of the incident wave propag
ing through the random scattering media with the scatte
numerical densityr; f (0) represents the scattering functio
of a single scatterer in the forward direction. The forwa
scattering function can be calculated by the standard se
expansion method for a cylinder with radiusa, when a wave
with wave vectork is incident normally on it. The forward
scattering function is given as

f ~0!5A 2

pk(
n50

`

Cne2 i (np/21p/4) ~6!

with

Cn5

2enFJn8~ka!Jn~k8a!2
1

gh
Jn~ka!Jn8~k8a!G

Hn
(1)8~ka!Jn~k8a!2

1

gh
Hn

(1)~ka!Jn8~k8a!

,

wheree051 anden>152, g is the ratio of the density of the
scatterer to that of the media,h is the ratio of the wave spee
in the sactterer to that in the media,Jn represents the Besse
function of ordern, Hn

(1) represents thenth order Hankel
function of first kind, and prime indicates the derivative.

B. Exact numerical calculation

Thus, on one hand the localization length of classi
wave in a system consisting of any kind of cylindrical sc
terers placed randomly in any media may be evaluated by
use of equations from the previous theory. On the other ha
the localization length of classical waves in two-dimensio
random media may also be calculated exactly by the us
the multiple scattering technique.

Consider N straight cylinders located atrW i with i
51,2, . . . ,N to form acompletelyrandom array. An acoustic
line source transmitting monochromatic waves is placed
rWs . Here we take the standard approach with regard to
source. That is, the transmission from the source is ca
lated from the multiple scattering theory, and assume that
source is not affected by the surroundings. If some ot
sources such as a line of atoms are used, the reaction
tween the source and the backscattered waves should
into account.

The scattered wave from each cylinder is a response to
total incident wave composed of the direct wave from t
source and the multiply scattered waves from other cy
ders. The final wave reaching a receiver located atrW r is the
sum of direct wave from the source and the scattered wa
from all the cylinders. Such scattering problem can be sol
6-2
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LOCALIZATION OF CLASSICAL WAVES IN TWO- . . . PHYSICAL REVIEW E 67, 036606 ~2003!
exactly, following Twersky. While the details are in Re
@27#, the essential procedures are summarized below.
formulation presented below has been successfully applie
explain the recent experimental observations of acou
crystals@28,29#.

The scattered wave from thej th cylinder can be written as

ps~rW,rW j !5 (
n52`

`

ipAn
j Hn

(1)~kurW2rW j u!einfrW2rW j, ~7!

wherek is the wave number in the medium,Hn
(1) is thenth

order Hankel function of first kind, andf rW2rW j
is the azi-

muthal angle of the vectorrW2rW j relative to the positivex
axis. The total incident wave around thei th cylinder (i
51,2, . . . ,N; iÞ j ) is summation of the direct incident wav
from the source and the scattered waves from all other s
terers, can be expressed as

pin
i ~rW !5 (

n52`

`

Bn
i Jn~kurW2rW i u!einfrW2rW i. ~8!

The coefficientsAn
i and Bn

i can be solved by expressin

the scattered waveps(rW,rW j ), for each j Þ i , in terms of the
modes with respect to thei th scatterer by the addition theo
rem for Bessel function@30#. Then the usual boundary con
ditions are matched at each individual scattering cylind
This leads to

Bn
i 5Sn

i 1 (
j 51,j Þ i

N

Cn
j ,i , ~9!

with

Sn
i 5 ipH2n

(1)~kurW i u!e2 infrW i, ~10!

Cn
j ,i5 (

l 52`

`

ipAl
jHl 2n

(1) ~kurW i2rW j u!ei ( l 2n)frW i2rW j, ~11!

and

Bn
i 5 iptn

i An
i , ~12!

wheretn
i are the transfer matrices relating the acoustic pr

erties of the scatterers and the surrounding medium,
have been given by Eq.~21! in Ref. @28#.

The coefficientsAn
i andBn

j can then be determined from
Eq. ~9!. Once the coefficientsAn

i are determined, the trans
mitted wave at any special point is given by

p~rW !5p0~rW !1(
i 51

N

(
n52`

`

ipAn
i Hn

(1)~kurW2rW i u!einfrW2rW i,

~13!

where p0 is the field when no scatterers are present. T
normalized transmission is defined asT5p/p0 and, there-
fore, the acoustic intensity is represented asuTu2.

The averaged localization length is subsequently de
mined by@31,32#
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^ lnuT~L !u2&
, ~14!

where L is the sample size, and̂•& denotes the ensembl
average over the random distribution of the scatterers. T
obtained localization length can be compared to that in
~4! obtained analytically from the previous theory.

III. RESULTS COMPARISON AND DISCUSSION

A. Results comparison

The system we consider here consists ofN identical air
cylinders placed randomly in water medium. The reason
hind considering the system as the air cylinders in wate
that due to the large contrast of densities for air and wa
and also a large contrast of sound speeds in air and water
air cylinders act as strong scatters to the waves propaga
in water media. The radius of each air cylinder isa. The
fraction of area occupied by the cylinders per area isb. The
average distance between nearest neighbors is, therefod
5(p/b)1/2a, which is also the lattice constant for the corr
sponding regular lattice array. All the cylinders are plac
completely randomly within a circle of radiusL. A transmit-
ting line source is located at the center and the receive
located outside the scattering cloud. In the computation,
acoustic intensity is normalized in such a way that its va
equals unity, when there are no scatterers present. Thus
uninteresting geometrical spreading effect is naturally elim
nated. All the lengths are scaled by the parameterd, and the
frequency is presented in terms ofka to make the computa
tion nondimensional.

Figure 1 shows the variation of^ lnuTu2& as a function of
the system sizeL for three different values of frequenc
(ka50.01, 0.013, and 0.016! with the filling fraction b
50.001. The^•& implies the configuration average of th
total transmitted intensity. Number of configurations cons
ered here is 200. It is apparent from the Fig. 1 that the av
aged total transmitted intensity decays exponentially with

FIG. 1. ^ lnuTu2& is plotted as a function of sample sizeL for
ka50.010 ~circles!, ka50.013 ~stars! and ka50.016 ~diamonds!,
respectively. Here the filling factorb is 0.001.
6-3
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B. C. GUPTA AND Z. YE PHYSICAL REVIEW E67, 036606 ~2003!
dimensionless system size,L for all the ka values shown in
the figure, which in turn indicates the localization of wave
those frequencies. The localization length is nothing but
characteristic decay length and thus it may be obtained f
the inverse of the slope of the straight lines~in Fig. 1! for
those frequencies. Similarly one may obtain the localizat
length of classical waves at other frequencies from the e
numerical computation.

Figure 2 presents the dimensionless localization lengtj
as a function of frequencieska for b50.001. The dashed
curve with circles represent the localization length obtain
from the exact numerical computation using the multip
scattering technique, while the solid curve represents the
calization length calculated from the theoretical formula
prescribed earlier in Eq.~4!. From the dashed curve, we ob
serve that the localization length increases very rapidly as
frequency of the wave is decreased at the low freque
regime, the localization length also increases rapidly with
increase of frequency at the high-frequency regime and th
is a minimum of localization length at an intermediate fr
quency. For lower values of frequencies, the waves propa
ing through the random media feel the media as homo
neous over a large distance depending on the wavelength
higher values of frequencies the waves are like very loc
ized objects that can easily propagate between the scatt
and at an optimal frequency, the waves feel the strong
scattering in the random media. Thus, the larger values
localization lengths at lower and higher frequencies and
minimum value of localization length at an intermediate f
quency are understood physically.

However, we observe that the critical change in the loc
ization length takes place at lower and higher frequenc
On the other hand, the solid curve also shows similar beh
ior. But, one important difference is that the minimum of t
dashed curve occurs at a higher frequency when comp
with that of the solid curve. In other wards, the strong
localization predicted from the previous theoretical formu
occurs at a frequency, which is lower than that obtained fr

FIG. 2. Localization lengthj is shown as a function of frequen
cieska for b50.001. The dashed curve with circles represent
exact values obtained numerically, while the solid curve is obtai
from theoretical formula.
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the exact numerical computation. As a result, we observe
the two curves cross each other at some frequency,
(ka)cr . For ka,(ka)cr , the localization length obtained
from exact numerical calculation is larger than that obtain
from the existing theoretical formula while forka.(ka)cr ,
the theoretical value dominates over the exact value of lo
ization length. @Note that both the results are theoretic
though, the results~values! obtained from the previous the
oretical formula are termed as theoretical results~values! and
those obtained from exact numerical calculations are term
as exact results~values! and we may use this convention fo
our convenience.# In the low- and high-frequency regimes
the discrepancies between the theoretical and the exact
ues are significant.

We have also done similar calculations forb50.01 and
compared the localization length obtained from the theor
cal formula with that obtained from the exact numeric
computation and is shown in Fig. 3. While the theoretic
formula seems to capture the shape of the exact results~Figs.
2 and 3!, but there are significant discrepancies with rega
to whether the waves are most localized, and where local
tion length starts to increase rapidly.

We have shown in Fig. 4, the variation of localizatio
lengthj as a function of the filling factorb for ka50.009,
which is less than (ka)cr in Fig. 2. The dashed curve with
circle represents the exact localization length obtained fr
numerical calculation, and the solid curve is obtained fro
theoretical formula. The solid curve shows the monotono
decrease of the localization length as the filing factor
creases but the exact result~dashed curve with circle! shows
completely different behavior: the localization length in
tially decreases and then increases monotonically, leavin
minimum at some value ofb. Thus, the wave with frequenc
ka50.009 becomes localized most strongly only for a sp
cific value of the average density of scatterers. However,
ka50.009, the exact localization length is larger than t
theoretical values for all filling factors. Thus, here we o
serve that at the frequencyka50.009, the theoretical result
do not capture the overall trend of the exact results. T
eventual increase of the localization length with increasingb

e
d

FIG. 3. Same as the Fig. 2 except thatb50.01 here.
6-4
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LOCALIZATION OF CLASSICAL WAVES IN TWO- . . . PHYSICAL REVIEW E 67, 036606 ~2003!
is understandable. At two limits, i.e., for either pure wa
(b50) or pure air (b51), there can be no localization an
the localization length must approach infinity. Therefore,
curve of the localization length versusb has to be in the
shape of valley as shown in Fig. 4. The theoretical resu
based upon the approximation that air cylinders are per
bative scatterers in the medium of water, thus the theor
expected to fail for strong scattering and thus cannot w
for largeb. This would explain, why the theory cannot ca
ture the overall trend of the localization length as a funct
of b.

The variation of localization lengthj as a function of the
filling factor b for a moderate frequencyka50.015, which
is greater than (ka)cr in Fig. 2, is shown in Fig. 5. The
dashed curve with circle represents the exact result and
solid curve represents the theoretical result for localizat
length. The localization length decreases with filling fac
for both the curves. However, there is a cross over betw
two curves at some value ofb, say bcr below which the
theoretical value is higher than the exact value and abovebcr

FIG. 4. Localization lengthj is shown as a function of filling
factorb for ka50.009. The dashed curve with circles represent
exact values obtained numerically, while the solid curve is obtai
from theoretical formula.
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the exact values are larger than the theoretical values
localization length. Thus atka50.015, the exact and theo
retical curves are similar in shape for the range ofb consid-
ered, the exact and theoretical values for localization len
matches atb5bcr , otherwise there are significant quantit
tive discrepancies. We note that when increasingb further,
like in Fig. 4, the valley shape for the exact result will a
pear; the explanation can be referred to from the above
cussion. All the observed discrepancies between the theo
ical and exact results are probably due to the approximat
involved in the previous theory.

In order to study the fluctuation behavior of localizatio
we define an exponent, by analogy with one-dimensio
cases@33#,

g[2
1

L
ln~ uTu2!, ~15!

which is reciprocal to the localization length. Figure 6~a!
shows the variance ofg, i.e., var(g)5^g2&2^g&2, as a
function of ka for b50.001.

We interestingly observe that for a range of frequenci
the fluctuation is rather small indicating that the wave

FIG. 5. Same as the Fig. 4 except thatka50.015 here.
e
d

FIG. 6. ~a! This shows the variance of the localization exponent var(g) as a function of frequencyka with b50.001. ~b! The variance
var(g) is shown as a function of the mean^g& for b50.001.
6-5
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FIG. 7. Scaled replots of Figs. 2 and 3. In the plots,a denotes the scaling factor. The theoretical results are plotted vsaka for two a
values.
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strongly localized in this range of frequencies. However,
low and high frequencies~below and above the range o
frequencies where the fluctuation is very small! the fluctua-
tion is high. This is an indication of some critical change
the localization behavior and it tends to suggest that wa
become very rapidly and critically less localized at low a
high frequencies. It may also be an implication of t
localization-delocalization transition, as discussed in R
@34,35#. These cannot be explained in the context of the c
rent diffusion based theory. We also plot the variance of
exponentg versus the mean̂g& in Fig. 6~b!. Here we do not
observe the linear dependence between the mean localiz
length and the variance, similar to one-dimensional ca
@33,36#.

B. Discussion

All the deviations from the predictions of the existin
theory should possibly have a couple of important implic
tions. The first is merely that the theory is not accur
enough, since it is necessarily based upon a perturba
scheme given the complications involved in the problem
this scenario is valid, we could believe that though inac
rate, the present theory still captures the fundamental na
of the localization phenomenon. It would then be expecta
that the discrepancies will be reduced when more and m
relevant multiple scattering processes are included in the
oretical derivation. A next task would thus be to look f
these scattering processes.

In fact, by inspection, it is evident that the exact and th
oretical results in Figs. 2 and 3 seem to be able to match e
other by a scaling. In Fig. 7, we replot the results from Fi
2 and 3 by rescaling the variableka for the exact results. The
scaling factora is 1.5 and 1.66 forb50.001 and 0.01, re-
spectively. Here we see that after the scaling, the two res
match quite well, particularly for lowb. Such scaling is
equivalent to replacingk in Eq. ~5! by k/a, suggesting a
need for renormalizing the parameters used in the the
possibly those that come from the effective medium appro
mation, as suggested by one of the referees. A few notes
be made on the scaling factor.

~1! As shown in Fig. 7, the scaling factor depends onb,
and appears to increase withb.
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~2! The scaled match degrades asb increases.
~3! Looking again at Figs. 4 and 5, we can infer that f

frequencies near the strongest localization, i.e., stron
scattering, the scaled match is expected to degrade fa
than other frequencies asb increases; for example, compa
ing Fig. 4 to Fig. 5, we can see that the exact and theoret
results forka50.015 have the similar shapes for a wid
range ofb.

All these would imply that the scaled match is better f
weak scattering, and the level of match decreases as the
tering increases which can be made by adding more sca
ers per unit area or moving to strong scattering regions
can also be inferred that Eq.~4! may capture the localization
essence, but there is a need for improvement of the effec
medium theory that leads to Eq.~5!.

The second implication would be simply that the existi
theory, which is based upon the absence-of-diffusion mec
nism, has not yet fully encapsulated the essence of the
nomenon of wave localization. Beside the results sho
above, there are other evidences indicating that this line
reasoning should not be discarded too lightly. For example
has been shown that in the localized state, a genuine ph
coherence behavior prevails as a unique feature of local
waves @34#. This coherent behavior can be understood
follows. For quantum mechanic or acoustic waves, the c
rent can be written asJW;Re„c(2 i )“c…, wherec stands for
the wave function for quantum mechanical systems and
the pressure in acoustic systems. Writing the field asc

5ucueiu, the current becomesJW;ucu2“u. It is clear that
when u is constant at least by domains whileucuÞ0, the
flow stops, i.e.,JW50, and the wave or the energy is localize
in space, i.e.,ucu2Þ0. Obviously the constant phaseu indi-
cates the appearance of a long range ordering in the sys
All these have been demonstrated successfully not only
two-dimensional media@34,35#, but for one and three dimen
sions as well@21,36,37#. It can be easily shown that the sam
consideration also holds for electromagnetic waves@38#. In
the current diffusion based theory, the phase information
not attained. Therefore, at least the theory cannot accoun
the phase coherence related localization phenomenon. A
tionally, the theory could also be expected to fail wh
waves come to a complete stop before the diffusion beco
6-6
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dominant. In summary, if the above arguments are valid,
next question would be whether these can be amende
improving the effective medium theory.

IV. SUMMARY

The localization length of classical waves in tw
dimensional random media is obtained from exact numer
computation as well as from the previous theoretical form
and then the results are compared. Significant discrepan
between the two results is observed. Furthermore, result
dicate some critical change in the localization behavior
low and high frequencies, and it seems to suggest that w
become very rapidly and critically less localized at these
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quencies. These features are not readily seen in the prev
theoretical picture of wave localization. However, by a re
caling of parameters the two results tend to match each o
for weak scattering. Therefore, it is suggested that cau
should be taken when applying the previous analytic the
to infer the localization length of classical waves. Possi
implications of the present research are discussed.
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